Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
BMC Infect Dis ; 23(1): 282, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2320597

ABSTRACT

BACKGROUND: Longitudinal data are lacking to compare booster effects of Delta breakthrough infection versus third vaccine dose on neutralizing antibodies (NAb) against Omicron. METHODS: Participants were the staff of a national research and medical institution in Tokyo who attended serological surveys on June 2021 (baseline) and December 2021 (follow-up); in between, the Delta-dominant epidemic occurred. Of 844 participants who were infection-naïve and had received two doses of BNT162b2 at baseline, we identified 11 breakthrough infections during follow-up. One control matched to each case was selected from boosted and unboosted individuals. We compared live-virus NAb against Wild-type, Delta, and Omicron BA.1 across groups. RESULTS: Breakthrough infection cases showed marked increases in NAb titers against Wild-type (4.1-fold) and Delta (5.5-fold), and 64% had detectable NAb against Omicron BA.1 at follow-up, although the NAb against Omicron after breakthrough infection was 6.7- and 5.2-fold lower than Wild-type and Delta, respectively. The increase was apparent only in symptomatic cases and as high as in the third vaccine recipients. CONCLUSIONS: Symptomatic Delta breakthrough infection increased NAb against Wild-type, Delta, and Omicron BA.1, similar to the third vaccine. Given the much lower NAb against Omicron BA.1, infection prevention measures must be continued irrespective of vaccine and infection history while the immune evasive variants are circulating.


Subject(s)
Antibodies, Neutralizing , Epidemics , Humans , BNT162 Vaccine , Breakthrough Infections , Vaccination , Antibodies, Viral
3.
Hum Vaccin Immunother ; 19(1): 2193074, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2304691

ABSTRACT

Although vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease 2019 (COVID-19) induce effective immune responses, vaccination with booster doses is necessary because of waning immunity. We conducted an open-label, non-randomized, single-arm study in adults in Japan to assess the immunogenicity and safety of a single booster dose of the KD-414 purified whole-SARS-CoV-2-virion inactivated vaccine candidate after vaccination with a primary series of BNT162b2. The primary endpoint was serum neutralizing activity at 7 days after booster injection compared with the primary series of BNT162b2. The SARS-CoV-2-structural protein-binding antibody level and T cell response against SARS-CoV-2-Spike (S) peptides were also examined as secondary endpoints, and safety profile assessments were conducted. Twenty subjects who participated in a previous study declined an injection of KD-414 (non-KD-414 group) and received a booster dose of BNT162b2 instead. The non-KD-414 group was compared to the KD-414 group as a secondary outcome. A single dose of KD-414 induced lower serum neutralizing activity against the wild-type virus within 7 days compared to after the primary series of BNT162b2 but significantly induced anti-SARS-CoV-2-S1-receptor-binding domain-binding immunoglobulin G (IgG) antibodies and SARS-CoV-2-S peptide-specific CD4+ and CD8+ T cell responses. Local or systemic symptoms were significantly lower in the participants who received KD-414 than in those who received BNT162b2 as the third COVID-19 vaccine dose. The present data indicate that a single booster dose of KD-414 induces a substantial immune response in BNT162b2-primed individuals and has a good safety profile, thereby supporting further clinical trials to identify rational targets.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , Japan , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Immunogenicity, Vaccine , Antibodies, Neutralizing
4.
Nat Commun ; 14(1): 1076, 2023 02 25.
Article in English | MEDLINE | ID: covidwho-2262859

ABSTRACT

COVID-19 caused by SARS-CoV-2 has continually been serious threat to public health worldwide. While a few anti-SARS-CoV-2 therapeutics are currently available, their antiviral potency is not sufficient. Here, we identify two orally available 4-fluoro-benzothiazole-containing small molecules, TKB245 and TKB248, which specifically inhibit the enzymatic activity of main protease (Mpro) of SARS-CoV-2 and significantly more potently block the infectivity and replication of various SARS-CoV-2 strains than nirmatrelvir, molnupiravir, and ensitrelvir in cell-based assays employing various target cells. Both compounds also block the replication of Delta and Omicron variants in human-ACE2-knocked-in mice. Native mass spectrometric analysis reveals that both compounds bind to dimer Mpro, apparently promoting Mpro dimerization. X-ray crystallographic analysis shows that both compounds bind to Mpro's active-site cavity, forming a covalent bond with the catalytic amino acid Cys-145 with the 4-fluorine of the benzothiazole moiety pointed to solvent. The data suggest that TKB245 and TKB248 might serve as potential therapeutics for COVID-19 and shed light upon further optimization to develop more potent and safer anti-SARS-CoV-2 therapeutics.


Subject(s)
Antiviral Agents , COVID-19 , Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , Animals , Humans , Mice , Antiviral Agents/pharmacology , Benzothiazoles , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors
5.
Transfus Apher Sci ; 62(3): 103638, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2241674

ABSTRACT

PURPOSE: In the current study, we aimed to evaluate the neutralizing IgG activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as the coagulation factors of convalescent plasmas which we manufactured in-house without a fast-freezing technique. METHODS: We collected plasmas from eligible participants who had confirmed certain titers of neutralizing antibodies. The plasmas were frozen and stored in the ordinary biofreezer without a fast-freezing function. The purified-IgG neutralizing activity of 20 samples from 19 participants and the coagulation factors of 49 samples from 40 participants were evaluated before and after freezing. RESULTS: Purified-IgG maintained its neutralizing activities, with the median 50 % inhibitory concentration (IC50) of 10.11 mg/ml (IQR 6.53-18.19) before freezing and 8.90 m g/ml (IQR 6.92-28.27) after thawing (p = 0.956). On the contrary, fibrinogen and factor Ⅷ decreased significantly after freezing and thawing in our environment. No significant temperature deviation was observed during the storage period. CONCLUSION: Neutralizing IgG activity, which largely contributes to the antiviral activity of convalescent plasma, did not change through our in-house manufacturing, without fastfreezing and storage conditions for more than 200 days. Ordinary freezers without the fast-freezing function are suitable enough to manufacture and store convalescent plasmas. Hospitals or facilities without specified resources could easily collect and store convalescent plasmas in case of upcoming emerging or re-emerging infectious diseases on-demand with appropriate neutralizing antibody levels measurements.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/therapy , Immunization, Passive , COVID-19 Serotherapy , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin G
7.
Int J Infect Dis ; 128: 347-354, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2237203

ABSTRACT

OBJECTIVES: To investigate the role of immunogenicity after the third vaccine dose against Omicron infection and COVID-19-compatible symptoms of infection. METHODS: First, we examined vaccine effectiveness (VE) of the third dose against the second dose during the Omicron wave among the staff at a tertiary hospital in Tokyo. In a case-control study of third vaccine recipients, we compared the preinfection live-virus neutralizing antibodies (NAb) against Omicron between breakthrough cases and their controls who had close contact with patients with COVID-19. Among these cases, we examined the association between NAb levels and the number of COVID-19-compatible symptoms. RESULTS: Among the 1456 participants for VE analysis, 60 breakthrough infections occurred during the Omicron wave. The third dose VE for infection was 54.6%. Among the third dose recipients, NAb levels against Omicron did not differ between the cases (n = 22) and controls (n = 21). Among the cases, those who experienced COVID-19-compatible symptoms had lower NAb levels against Omicron than those who did not. CONCLUSION: The third vaccine dose was effective in decreasing the risk of SARS-CoV-2 infection during Omicron wave compared with the second dose. Among third dose recipients, higher preinfection NAb levels may not be associated with a lower risk of Omicron infection. Contrarily, they may be associated with fewer symptoms of infection.


Subject(s)
COVID-19 , Vaccines , Humans , Antibodies, Neutralizing , BNT162 Vaccine , Breakthrough Infections , Case-Control Studies , SARS-CoV-2 , Antibodies, Viral
9.
Sci Rep ; 13(1): 1263, 2023 Jan 23.
Article in English | MEDLINE | ID: covidwho-2212030

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated the anti-SARS-CoV-2 antibody levels, anti-spike (S)-immunoglobulin G (IgG) and anti-nucleocapsid (N)-IgG, and the neutralization activity of IgG antibody in COVID­19­convalescent plasma against variants of SARS-CoV-2, alpha, beta, gamma, delta, kappa, omicron and R.1 strains. The study included 30 patients with clinically diagnosed COVID-19. The anti-S-IgG and anti-N-IgG levels ranged from 30.0 to 555.1 and from 10.1 to 752.6, respectively. The neutralization activity (50% inhibition concentration: IC50) for the wild-type Wuhan strain ranged from < 6.3 to 81.5 µg/ml. IgG antibodies were > 100 µg/ml in 18 of 30 (60%) subjects infected with the beta variant. The IC50 values for wild-type and beta variants correlated inversely with anti-S-IgG levels (p < 0.05), but no such correlation was noted with anti-N-IgG. IgG antibodies prevented infectivity and cytopathic effects of six different variants of concern in the cell-based assays of wild-type, alpha, gamma, delta, kappa and R.1 strains, but not that of the beta and omicron strains. IgG is considered the main neutralizing activity in the blood, although other factors may be important in other body tissues.


Subject(s)
Blood Group Antigens , COVID-19 , Humans , SARS-CoV-2 , Immunoglobulin G , COVID-19 Serotherapy , Antibodies, Viral , Antibodies, Neutralizing
10.
Biol Pharm Bull ; 45(10): 1559-1563, 2022.
Article in English | MEDLINE | ID: covidwho-2114472

ABSTRACT

Dihydroceramide Δ4-desaturase 1 (DEGS1) enzymatic activity is inhibited with N-(4-hydroxyphenyl)-retinamide (4-HPR). We reported previously that 4-HPR suppresses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry through a DEGS1-independent mechanism. However, it remains unclear whether DEGS1 is involved in other SARS-CoV-2 infection processes, such as virus replication and release. Here we established DEGS1 knockout (KO) in VeroE6TMPRSS2 cells. No significant difference was observed in virus production in the culture supernatant between wild-type (WT) cells and DEGS1-KO cells, although the levels of dihydroceramide (DHCer), a DEGS1 substrate, were significantly higher in DEGS1-KO cells than WT cells. Furthermore, the virus-induced cytopathic effect was also observed in DEGS1-KO cells. Importantly, the EC50 value of 4-HPR in DEGS1-KO cells was almost identical to the value reported previously in WT cells. Our results indicated the lack of involvement of DEGS1 in SARS-CoV-2 infection.


Subject(s)
COVID-19 , Fenretinide , Animals , Ceramides , Chlorocebus aethiops , Fatty Acid Desaturases , Fenretinide/pharmacology , Humans , Oxidoreductases , SARS-CoV-2 , Vero Cells
11.
Microbiol Spectr ; : e0271622, 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2063987

ABSTRACT

Secretory immunoglobulin A (IgA) plays a crucial role in mucosal immunity for preventing the invasion of exogenous antigens; however, little is understood about the neutralizing activity of serum IgA. Here, to examine the role of IgA antibodies against COVID-19 illnesses, we determined the neutralizing activity of serum/plasma IgG and IgA purified from previously SARS-CoV-2-infected and COVID-19 mRNA vaccine-receiving individuals. We found that serum/plasma IgA possesses substantial but rather modest neutralizing activity against SARS-CoV-2 compared to IgG with no significant correlation with the disease severity. Neutralizing IgA and IgG antibodies achieved the greatest activity at approximately 25 and 35 days after symptom onset, respectively. However, neutralizing IgA activity quickly diminished to below the detection limit approximately 70 days after onset, while substantial IgG activity was observed until 200 days after onset. The total neutralizing activity in sera/plasmas of those with COVID-19 largely correlated with those in purified IgG and purified IgA and levels of anti-SARS-CoV-2-S1-binding IgG and anti-SARS-CoV-2-S1-binding IgA. In individuals who were previously infected with SARS-CoV-2 but had no detectable neutralizing IgA activity, a single dose of BNT162b2 or mRNA-1273 elicited potent serum/plasma-neutralizing IgA activity, but the second dose did not further strengthen the neutralization antibody response. The present data show that the systemic immune stimulation with natural infection and COVID-19 mRNA-vaccines elicits both SARS-CoV-2-specific neutralizing IgG and IgA responses in serum, but the IgA response is modest and diminishes faster than the IgG response. IMPORTANCE Secretory dimeric immunoglobulin A (IgA) plays an important role in preventing the invasion of foreign objects by its neutralizing activity on mucosal surfaces, while monomeric serum IgA is thought to relate to the phagocytic immune system activation. Here, we report that individuals with the novel coronavirus disease (COVID-19) developed both systemic neutralizing IgG (nIgG) and IgA (nIgA) active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the nIgA response was quick and reached the highest activity earlier than the nIgG response, nIgA activity was modest and diminished faster than nIgG activity. In individuals who recovered from COVID-19 but had no detectable nIgA activity, a single dose of COVID-19 mRNA vaccine elicited potent nIgA activity, but the second dose did not further strengthen the antibody response. Our study provides novel insights into the role and the kinetics of serum nIgA against the pathogen in both naturally infected and COVID-19 mRNA vaccine-receiving COVID-19-convalescent individuals.

12.
Sci Rep ; 12(1): 13524, 2022 08 08.
Article in English | MEDLINE | ID: covidwho-2050491

ABSTRACT

In the present prospective study, 225 individuals in Kumamoto General Hospital, Japan, who received two-doses of BNT162b2 vaccine were enrolled/followed up over 150 days and neutralizing activity (NT50) of their sera and antiviral activity (EC50) of IgG purified from sera on day-60 post-1st-dose were determined against wild-type SARS-CoV-2 (SARS-CoV-2Wuhan) (n = 211) and 9 variants (Alpha, Beta, Gamma, Delta, and Kappa) (n = 45). Time-dependent changes of IgG-activity (n = 25) against SARS-CoV-2Wuhan and variants were also examined. Day-60 sera showed reduced NT50 by more than 50% against all variants examined, and greatest reduction was seen with Beta. IgG fractions of high-responders and moderate-responders showed similar fold-changes in EC50 against each variant compared to SARS-CoV-2Wuhan. Evaluation of EC50 of IgG obtained at different time-points (day-28 to -150) revealed time-dependent reduction of activity against all variants. However, against Delta, relatively long-lasting favorable antiviral activity (at least 150 days) was observed. Our data strongly suggest that the successful antecedent scale-up of mRNA-based vaccine administrations in Japan was the primary contributor to the lessening of the otherwise more devastating SARS-CoV-2 pandemic wave caused by the Delta variant. The present data that the effectiveness of vaccine against the then-dominant SARS-CoV-2 variant was likely associated with the moderation of the COVID-19 pandemic wave suggest that as in the case of influenza vaccines, the development of multivalent mRNA-based vaccines represent a generalizable approach to pre-emptively respond pandemic with mutable pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunoglobulin G , Pandemics , Prospective Studies , RNA, Messenger
13.
Sci Rep ; 12(1): 15447, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2028726

ABSTRACT

The humoral and cellular immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon the coronavirus disease 2019 (COVID-19) vaccination remain to be clarified. Hence, we aimed to investigate the long-term chronological changes in SARS-CoV-2 specific IgG antibody, neutralizing antibody, and T cell responses during and after receiving the BNT162b2 vaccine. We performed serological, neutralization, and T cell assays among 100 hospital workers aged 22-73 years who received the vaccine. We conducted seven surveys up to 8 months after the second vaccination dose. SARS-CoV-2 spike protein-specific IgG (IgG-S) titers and T cell responses increased significantly following the first vaccination dose. The highest titers were observed on day 29 and decreased gradually until the end of the follow-up period. There was no correlation between IgG-S and T cell responses. Notably, T cell responses were detected on day 15, earlier than the onset of neutralizing activity. This study demonstrated that both IgG-S and T cell responses were detected before acquiring sufficient levels of SARS-CoV-2 neutralizing antibodies. These immune responses are sustained for approximately 6 to 10 weeks but not for 7 months or later following the second vaccination, indicating the need for the booster dose (i.e., third vaccination).


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunity, Humoral , Immunoglobulin G , Longitudinal Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Vaccination
14.
J Infect Chemother ; 28(12): 1704-1706, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2007850

ABSTRACT

Vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown high efficacy in preventing the onset of disease. However, the immune response to infection immediately after the first vaccination remains unknown. We examined the anti-SARS-CoV-2-binding-antibody titers and neutralizing activity in patients who developed coronavirus disease 2019 after the first vaccination. The amount of anti-SARS-CoV-2-binding antibodies and neutralizing activity drastically increased from the first to the second collection. Our results may provide important data on the course of immune response following vaccination.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests/methods , SARS-CoV-2 , Vaccination
15.
CEN Case Rep ; 11(4): 422-427, 2022 11.
Article in English | MEDLINE | ID: covidwho-1943428

ABSTRACT

Hemodialysis patients are vulnerable to severe and lethal COVID-19, and their protective immunity against COVID-19 is not yet fully understood. Therefore, we report a case of COVID-19 reinfection in a hemodialysis patient 81 days after the first episode and discuss the role of antibodies in SARS-CoV-2 infection. A hemodialysis patient developed asymptomatic COVID-19 due to an outbreak in a hospital on October 29th, 2020. As he was hospitalized and did not develop any symptoms, he was discharged on November 9th. On January 18th, he presented with symptomatic COVID-19 due to close household contact. Then, he developed respiratory failure and was transferred to National Center for Global Health and Medicine if he would need intensive care. He recovered with oxygen inhalation, favipiravir, and steroid treatment, and was discharged on February 12th. To evaluate anti-SARS-CoV-2 antibodies during two hospital stays, we measured immunoglobulin (Ig) G specific for S1 subunit of Spike (S) protein of SARS-CoV-2 (IgG-S1) , IgG specific for the full-length S protein (anti-Spike IgG) and neutralizing antibodies. No seroconversion occurred 5 days after initial infection, the seroconversion of IgG-S1 was observed 10 days after the second infection. Similar to IgG-S1 antibody titer results, anti-Spike IgG and neutralizing antibodies increased from 12 days after the second infection. In conclusion, we experienced a case of COVID-19 reinfection in a hemodialysis patient 81 days after the first episode and showed the kinetics and role of antibodies in SARS-CoV-2 infection. Further studies are needed to understand SARS-CoV-2 reinfection risk in hemodialysis patients and its clinical significance.


Subject(s)
COVID-19 , Male , Humans , SARS-CoV-2 , Reinfection , Antibodies, Viral , Antibodies, Neutralizing , Renal Dialysis , Immunoglobulin G
16.
Nature ; 607(7917): 119-127, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915276

ABSTRACT

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/analogs & derivatives , Drug Combinations , Hydroxylamines , Indazoles , Lactams , Leucine , Mice , Nitriles , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Triazines , Triazoles
17.
Life (Basel) ; 12(7)2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-1911456

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is currently ongoing, and there have been significant efforts in the development of COVID-19 vaccines. However, the neutralizing antibody titers in vaccinated individuals are reported to progressively decrease over time. Japanese pharmaceutical companies have published the results of Phase I and II studies on the safety and efficacy of different vaccines. Final clinical trials will be conducted with the aim of practical application by March 2023. To effectively utilize vaccines developed by Japanese companies, the efficacy and safety of a booster dose (i.e., third vaccination) must be evaluated among individuals who have received three doses of different vaccines. METHODS: This protocol describes a study that aims to examine the effect of a booster dose of "KD-414", a novel Japanese inactivated vaccine, on antibody titers among participants involved in a previous study. Volunteers in this protocol will be recruited from participants in the previous study and immunized with KD-414 after obtaining consent. The antibody titers, before and after immunization with KD-414, among participants who previously received two doses of the BNT162b2 mRNA vaccine, will be comparatively analyzed. DISCUSSION: The reactogenicity and immunogenicity of seven different COVID-19 vaccines including an inactivated vaccine as a third dose after two doses of ChAdOx1 nCov-19 or BNT162b2, has been tested previously, and found to be superior to control (quadrivalent meningococcal conjugate vaccine) regardless of which vaccine had been received during the initial course. This suggests that many types of third booster doses are efficacious. It is anticipated that this study will provide evidence of the safety and immunogenicity of KD-414 as a booster vaccine, which will have profound public health implications.

18.
Int J Infect Dis ; 119: 18-20, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1889466

ABSTRACT

We present a case of a 58-year-old Japanese man with a history of 2 previous COVID-19 infections, who received 2 doses of mRNA-1273 vaccine. We are not aware of any previous study regarding antibody tendency after 2 infections and 2 vaccinations. We evaluated his IgG titer of antispike protein and neutralizing activity from the first infection before and after 2 doses of vaccine. Both antispike IgG titer and neutralizing activity showed a tendency to decline almost 1 year after initial infection; they rapidly increased after the first vaccination, and they remained high after the second vaccination. Although this is a single case report, it seems to have generalizability because the findings are consistent with previous reports regarding single infections or 3 doses of vaccination. Our findings suggest that a single booster shot may provide sufficient protection and aid the understanding of immunologic responses of vaccination in patients with COVID-19 with history of re-infection.


Subject(s)
COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Male , Middle Aged , Reinfection , SARS-CoV-2 , Vaccination
19.
Life (Basel) ; 12(6)2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1884262

ABSTRACT

BACKGROUND: Coronavirus disease 2019 is a global public health concern. As of December 2020, the therapeutic agents approved for coronavirus disease 2019 in Japan were limited to two drugs: remdesivir, an antiviral drug, granted a Special Approval for Emergency on 7 May 2020, and dexamethasone, which has an anti-inflammatory effect. The aim of this study is to evaluate the efficacy of convalescent plasma collected from donors who recovered from coronavirus disease 2019. METHODS: This is an open-label, randomized controlled trial comprising two groups: a convalescent plasma and a standard-of-care group. Plasma administered to patients with coronavirus disease 2019 randomized in the convalescent plasma group of this trial will be plasma that has been collected and stored in an associated study. Patients with a diagnosis of mild coronavirus disease 2019 will be included in this trial. The efficacy of convalescent plasma transfusion will be evaluated by comparing the convalescent plasma group to the standard-of-care group (without convalescent plasma transfusion) with respect to changes in the viral load and other measures. The primary endpoint will be time-weighted average changes in the SARS-CoV-2 virus load in nasopharyngeal swabs from day 0 to days 3 and 5. It is hypothesized that the intervention should result in a decrease in the viral load in the convalescent plasma group until day 5. This endpoint has been used as a change in viral load has and been used as an index of therapeutic effect in several previous studies. DISCUSSION: The proposed trial has the potential to prevent patients with mild COVID-19 from developing a more severe illness. Several RCTs of convalescent plasma therapy have already been conducted in countries outside of Japan, but no conclusion has been reached with respect to the efficacy of convalescent plasma therapy, which is likely in part because of the heterogeneity of the types of target patients, interventions, and endpoints among trials. Actually, previous clinical trials on plasma therapy have shown inconsistent efficacy and are sometimes ineffective in COVID-19 patients with severe disease, which is due to unmeasured neutralizing antibody titer in the COVID-19 convalescent plasma. To improve this issue, in this study, we measure neutralizing activity of convalescent plasma before administration and provide the plasma with high neutralizing activity to the subjects. It is hoped that this study will further evidence to support the role of convalescent plasma therapy in COVID-19.

20.
Int J Infect Dis ; 121: 85-88, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1873077

ABSTRACT

Although messenger ribonucleic acid vaccines are substantially effective toward SARS-CoV-2 infection, patients with hematologic malignancies are still prone to the virus. Herein, we report a fatal case of breakthrough SARS-CoV-2 Delta variant infection in a patient with mucosa-associated lymphoid tissue lymphoma with remission by bendamustine-rituximab (BR) therapy completed a year ago. The serologic study revealed impaired responsiveness toward vaccines and prolonged high viral load after infection. BR therapy seemingly induced an immune escape. Prevention and treatment strategies for such vulnerable patients should be clarified immediately.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bendamustine Hydrochloride/adverse effects , Humans , Rituximab/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL